When in 1956, two Américans physicists Cowan et Reines, proved that the neutrino was a real particle, its existence was admitted, but it was considered "undetectable".
Clyde Cowan and Frederick Reines set up their experiment to prove the existence of neutrinos. That was the time also when the first nuclear reactors for civilian use were put into operation. Cowan and Reines had the idea to take advantage of the intense flux of neutrinos they generated, fluxes ranging from 1000 to 10,000 billion neutrinos per second and square centimetre, much more intense than those expected from radioactive sources.
Reines (left) and Cowan at the controls of the experiment in Hanford, Washington, where they obtaine...
Beta decay of fission products in reactors generate neutrinos, which are actually antineutrinos. Only a tiny fraction of these antineutrinos have the opportunity to interact with protons through the so-called and simple inverse beta reaction: The proton become a neutron and the antineutrini a positon. By inverse beta decay, the predicted neutrino, more correctly an electron antineutrino (Ve), should interact with a proton (p) to produce a neutron (n) and positron (e+).
The beta inverse reaction.
The positons (or positrons), which are particles of antimatter, quickly found electrons with which they annihilate. They vanish in a very characteristic manner through the emission of two annihilation energetic gamma photons of 511 keV emitted back to back. But Cowan and Reines realized that this signature was not enough to prove that the positron was due to a antineutrino interaction. They looked for the presence of the neutron, that accompanies the positron, to confirm the reaction.
They added cadmium chloride in a water tank of 200 liters, that acts as a target and a detector as well. Cadmium is a efficient neutron absorber used in reactor control rods. By absorbing a neutron, cadmium-108 turns into an excited cadmium-109 nucleus, which emits a characteristic desexcitation gamma ray.
The Savannah River neutrinos detector of Reines and Cowan 1956.
For gamma detection, Reines and Cowan introduced in the water volume organic liquid scintillators that had just been discovered. In response to gamma rays, these scintillators produce flashes of light that were amplified and detected by photomultipliers placed on both sides of the tank.
The experimental set-up was designed in such a way that the third detected gamma should be detected less than 5 millionth of a second after the two gamma coming from the positron annihilation. The detection of three gamma within such a short time interval was an unmistakable signature of a neutrino interaction. Reines and Cowan accumulated data during several months, at an average rate of three neutrinos events per hour.
Set-up of the Reines Cowan experiment.
They checked that these events disappear when the reactor was stopped. Finally, they measured for this "beta inverse reaction" a rate compatible with the theoretical predictions made at the time.
REFERENCES
History of the Neutrino. Available in: https://neutrino-history.in2p3.fr/experimental-discovery/. Access in: 23/09/2018.
Wikipedia. Available in: https://en.wikipedia.org/wiki/Cowan%E2%80%93Reines_neutrino_experiment. Access in: 23/09/2018.
Default timespace